Federal Urdu University of Arts,Science \& T Technology

$\mathbb{A} \mathbb{A} \mathbb{M} \mathbb{A} \mathbb{N} \mathbb{U} \mathbb{A} I$

FI RST SEMESTER

 BASIC ELECTRICAL \& CI RCUIT ANALYSIS
BASI C ELECTRICAL \& ELECTRONI CS LAB DEPARTMENT OF ELECTRICAL ENGI NEERI NG

Prepared By:
Engr. Yousaf Hameed
Lecturer (Lab) Electrical, FUUAST-Islamabad

Checked By:
Engr. M.Nasim Khan
Senior Lab Engineer Electrical,
FUUAST-Islamabad

Approved By:

Dr.Noman J afri
Dean,
FUUAST-Islamabad

Name:
Registration No:
Roll No: \qquad

Semester: \qquad
Batch: \qquad

CONTENTS

Exp No	List of Experiments
1	FAMILIARIZATION WITH BASIC LAB EQUIPMENT
2	MEASUREMENT OF RESISTANCE \& CAPACITANCE
3	VERIFICATION OF OHMS LAW
4	CHARACTERISTICS OF SERIES DC CIRCUIT
5	CHARACTERISTICS OF PARALLEL DC CIRCUITS
6	SOFTWARE SIMULATION
7	MESH ANALYSIS
9	COMPUTER AIDED CIRCUIT ANALYSIS
10	VERIFICATION OF THEVENIN'S THEOREM
11	MAXIMUM POWER TRANSFER THEOREM
13	AC RC CIRCUIT CIRCUIT
14	A RLC CIRCUIT
15	POWER IN AC CIRCUIT

EXPERIMENT NO - 01

FAMILIARIZATION WITH BASIC LAB EQUIPMENT

OBJECTIVE:

1. Familiarization with KL-100 Training System
2. Familiarization with the use of Basic Lab Equipments

- Oscilloscope
- Function Signal Generator
- DC Power Supply
- Multi-Meter

DISCRIPTION:

KL-100 Training System (Main Unit)
Introduction and Operation of the top panel

Power Supply:

1. Dual DC Power Supply:

Synchronous positive and negative voltage output. Turn the knob clockwise to increase voltage and counterclockwise to decrease Output range: $\pm 3 \mathrm{~V} \sim \pm 18 \mathrm{~V}$
2. Fixed DC Power Supply:
3. AC Source:

4 preset outputs, $\pm 5, \pm 12$
$9 \mathrm{~V} \sim 0 \mathrm{~V} \sim 9 \mathrm{~V}$

Signal Generator:

4. Function Generator:

OUTPUT:
FUNCTION:
RANGE:
AMPLITUDE:
FREQUENCY:

Measuring Instruments:

5-a DC Voltmeter:
Block 4 on figure listed from top down
$50 \Omega \pm 10 \%$ output impedance.
Waveform Selector (Triangle, Sine, Square)
$100 \mathrm{~Hz} \sim 100 \mathrm{KHz}$ selector (4 ranges)
Amplitude controller, turn clockwise to increase
Frequency controller, turn clockwise to increase

5-b DC Amp meter: $\quad 0 \sim 100 \mathrm{~mA} \sim 1 \mathrm{~A}$
5-c AC Voltmeter:
$0 \sim 15 \mathrm{~V}$
5-d AC Amp meter:
$0 \sim 100 \mathrm{~mA} \sim 1 \mathrm{~A}$
The tiny holes below these four meters are for fine adjustment.
6. Digital DC Voltmeter/Amp meter:

The volt/amp meter selector is on the bottom and the range selectors are on the left.

CAUTION:

Input/output Devices

7. Speaker:
an $8 \Omega / 0.25 \mathrm{~W}$ speaker with driver circuit.
8 -a $1 \mathrm{~K} \Omega, 0.25 \mathrm{~W}$ potential meter, with A, B, C terminal
8 -b $\quad 10 \mathrm{~K} \Omega, 0.25 \mathrm{~W}$ potential meters, with $\mathrm{A}, \mathrm{B}, \mathrm{C}$ terminal
8 -c $100 \mathrm{~K} \Omega, 0.25 \mathrm{~W}$ potential meter, with A, B, C terminal
$8-\mathrm{d} \quad 1 \mathrm{M} \Omega, 0.25 \mathrm{~W}$ potential meter, with A, B, C terminal
8. External Connection: Two 840 tie-point breadboard for circuit Prototyping and designing
9. Four modules mounting for securing the modules.

Dual Trace Oscilloscope 20MHz (GW INSTEK GOS-620)

Introduction of Front Panel

CRT :

POWER
(6)

Main power switch of the instrument. When this switch is turned on, the LED (5) is also turned on.
INTEN
(2)

Controls the brightness of the spot or trace.
FOCUS
(3)

For focusing the trace to the sharpest image.
TRACE ROTATION.
.(4)
Semi-fixed potentiometer for aligning the horizontal trace in parallel with graticule lines.
FILTER (33)

Filter for ease of waveform viewing.

Vertical Axis:

CH 1 (X) input
Vertical input terminal of CH 1. When in $\mathrm{X}-\mathrm{Y}$ operation, X -axis input terminal.
CH 2 (Y) input.
(20)

Vertical input terminal of CH 2. When in X-Y operation, Y-axis input terminal. AC-GND-DC. \qquad (10)(18)

Switch for selecting connection mode between input signal and vertical amplifier.
AC : AC coupling
GND : Vertical amplifier input is grounded and input terminals are disconnected.
DC : DC coupling
VOLTS/DIV. (7)(22)

Select the vertical axis sensitivity, from 5mV/DIV to 5V/DIV in 10 ranges.

VARIABLE
(9)(21)

Fine adjustment of sensitivity, with a factor of $\geq 1 / 2.5$ of the indicated value. When in the CAL position, sensitivity is calibrated to indicated value. When this knob is pulled out(x5 MAG state), the amplifier sensitivity is multiplied by 5 .
CH1 \& CH2 DC BAL.(13)(17)
These are used for the attenuator balance adjustment. See page 20 DC BAL adjustments for the details.

- POSITION. \qquad (11)(19)

Vertical positioning control of trace or spot.
VERT MODE
Select operation modes of CH 1 and CH 2 amplifiers.
CH 1 : The oscilloscope operates as a single-channel instrument with CH 1 alone.
CH 2 : The oscilloscope operates as a single-channel instruments with CH 2 alone.
DUAL : The oscilloscope operates as a dual-channel instrument both CH 1 and CH 2 .
ADD : The oscilloscope displays the algebraic sum $(\mathrm{CH} 1+\mathrm{CH} 2)$ or difference $(\mathrm{CH} 1-\mathrm{CH} 2)$ of the two signals. The pushed in state of $\mathrm{CH} 2 \mathrm{INV}(16)$ button is for the difference $(\mathrm{CH} 1-\mathrm{CH} 2)$.

ALT/CHOP

\qquad (12)

When this switch is released in the dual-trace mode, the channel 1 and channel 2 inputs are alternately displayed (normally used at faster sweep speeds).
When this switch is engaged in the dual-trace mode, the channel 1 and channel 2 inputs are chopped and displayed simultaneously (normally used at slower sweep speeds).
CH2 INV.
Inverts the CH2 input signal when the CH2 INV switch mode is pushed in The channel 2 input signal in ADD mode and the channel 2 trigger signal pickoff are also inverted.

Triggering:

EXT TRIG IN input terminal
Input terminal is used for external triggering signal. To use this terminal, set SOURCE switch (23) to the EXT position.
SOURCE \qquad (23)

Select the internal triggering source signal, and the EXT TRIG \mathbb{N} input signal.
CH 1
: When the VERT MODE switch(14) is set in the DUAL or ADD state, select CH 1 for the internal triggering source signal.
CH 2 : When the VERT MODE switch(14) is set in the DUAL or ADD state, select CH 2 for the internal triggering source signal.
TRIG.ALT(27) : When the VERT MODE switch(14) is set in the DUAL or ADD state, and the SOURCE switch(23) is selected at CH 1 or CH 2 , with the engagement of the TRIG.ALT switch(27), it will alternately select CH $1 \& \mathrm{CH} 2$ for the internal triggering source signal.
LINE : To select the AC power line frequency signal as the triggering signal.
EXT : The external signal applied through EXT TRIG IN input terminal(24) is used for the external triggering source signal.
SLOPE (26)

Select the triggering slope.
" + " : Triggering occurs when the triggering signal crosses the triggering level in positive-going direction.
"-": Triggering occurs when the triggering signal crosses the triggering level in negative-going direction.
LEVEL
(28)

To display a synchronized stationary waveform and set a start point for the waveform.
Toward " + " : The triggering level moves upward on the display waveform.
Toward "-" : The triggering level moves downward on the display waveform.
TRIGGER MODE....(25)
Select the desired trigger mode.
AUTO : When no triggering signal is applied or when triggering signal frequency is less than 25 Hz , sweep runs in the free run mode.
NORM : When no triggering signal is applied, sweep is in a ready state and the trace is blanked out. Used primarily for observation of signal $\leq 25 \mathrm{~Hz}$.
TV-V : This setting is used when observing the entire vertical picture of television signal.
TV-H : This setting is used when observing the entire horizontal picture of television signal. (Both TV-V and TV-H synchronize only when the synchronizing signal is negative.)

Time Base

TIME/DIV
Sweep time ranges are available in 20 steps from 0.2 uS/div to $0.5 \mathrm{~S} / \mathrm{div}$.
$\mathrm{X}-\mathrm{Y}$: This position is used when using the instrument as an $\mathrm{X}-\mathrm{Y}$ oscilloscope.
SWP.VAR \qquad (30)

Vernier control of sweep time. This control works as CAL and the sweep time is calibrated to the value indicated by TIME/DIV. TIME/DIV of sweep can be varied continuously when shaft is out of CAL position. Then the control is rotated in the direction of arrow to the full, the CAL state is produced and the sweep time is calibrated to the value indicated by TIME/DIV. Counterclockwise rotation to the full delays the sweep by 2.5 time or more.
4 POSITION \qquad (32)

Horizontal positioning control of the trace or spot.
x 10 MAG .
When the button is pushed in, a magnification of 10 occurs.

Others

CAL
This terminal delivers the calibration voltage of $2 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{kHz}$, positive square wave.
GND
Ground terminal of oscilloscope mainframe.

Introduction of Rear Panel

Z AXIS INPUT. \qquad
Input terminal for external intensity modulation signal.
CH 1 SIGNAL OUTPUT.
Delivers the CH 1 signal with a voltage of approximately 20 mV per 1 DIV into a 50 -ohm termination. Suitable for frequency counting, etc.

EXPERIMENT NO - 02

MEASUREMENT OF RESISTANCE \& CAPACITANCE

OBJECTIVE:

Introduction to the Measuring Methods of Resistance and Capacitance

EQUIPMENT/COMPONENTS REQUIRED:

1. Different Valued Resistors, Capacitors
2. VOM (Volt-Ohm-Milliammeter)
3. DMM (Digital Multimeter)

THEORY \& PROCEDURE:

NOTE:
The purpose of this experiment is to acquaint you with the equipment, so do not rush. Learn how to read the meter scales accurately, and take your data carefully. You must become comfortable with the instruments if you expect to perform your future job function in a professional manner.

"Part 1: Resistance Measurement"

METHOD 1: Resistance Measurement using VOM/ DMM:

1. Resistance is never measured by an ohm-meter in a live network, due to the possibility of damaging the meter with excessively high currents and obtaining readings that have no meaning.
2. Always start with the highest range of the instrument and switch down to the proper range successively.
3. Use the range in which the deflection falls in the upper half of the meter scale.
4. Try to ascertain the polarity of dc voltages before making the measurement.
5. Whenever measuring the resistance of a resistor in a circuit, note whether there are any other resistive elements that could cause an error in the reading. It may be necessary to disconnect one side of the resistor before measuring.
6. Check the zero and ohms adjustments each time the range is changed.
7. When making measurements, grip the test prods by the handles as close to the lead end as possible. Do not allow the fingers to touch the prod tips while measuring.
8. Keep the instruments away from the edge of the workbench, and away from heat and dangerous fumes.
9. There is no zero adjustment on a DMM, but make sure that $\mathrm{R}=0$ ohm when the leads are touching or an adjustment internal to the meter may have to be made. Any resistance above the maximum for a chosen scale will result in an O.L. indication.
10. The ranges are usually marked as multiples of R. For example,

$R \times 1, R \times 10, R \times 100, R \times 1 k$

The value of the resistor can be found by multiplying the reading by the range setting.
For example, a reading of 11 on the $R \times 1 \mathrm{k} \Omega$ range is $11 \times 1 \mathrm{k} \Omega=11 \mathrm{k} \Omega$, or $11,000 \Omega$.
METHOD 2: Resistance Measuring Using Color Coding:

1. The resistance of many resistors can be determined by reading a series of colored bands imprinted on the resistor body. In this scheme called "Resistor Color Code" each colour represents a different decimal digit, as shown in fig. 1 and Table 2.
Table 2: Resistor Color Code:

Colour	Digit	Multiplier	Tolerance
Black	0	1	
Brown	1	10	$\pm 1 \%$
Red	2	100	$\pm 2 \%$
Orange	3	1 K	
Yellow	4	10 K	
Green	5	100 K	$\pm 0.5 \%$
Blue	6	1 M	$\pm 0.25 \%$
Violet	7	10 M	$\pm 0.1 \%$
Grey	8		
White	9		
Gold		0.1	$\pm 5 \%$
Silver		0.01	$\pm 10 \%$
None			$\pm 20 \%$
Digit	Color	Digit	Color
$\mathbf{0}$	Black	$\mathbf{7}$	Violet

The first three bands of the color code are used to specify nominal value of the resistance, and the fourth, or tolerance band, gives the percent deviation from the nominal value that the actual resistor may have. Due to manufacturing variations, the actual resistance may be anywhere in a range equal to the nominal value plus or minus a certain percentage of that value.

Figure-1

Capacitor Colour Code

A colour code was used on polyester capacitors for many years. It is now obsolete, but of course there are many still around. The colours should be read like the resistor code, the top three colour bands giving the value in pF . Ignore the 4th band (tolerance) and 5th band (voltage rating).

For example: brown, black, orange means

$$
10000 \mathrm{pF}=10 \mathrm{nF}=0.01 \mu \mathrm{~F} .
$$

Note that there are no gaps between the colours bands, so 2 identical bands actually appear as a wide band.
For example: wide red, yellow means $220 n F=0.22 \mu F$.

Colour Code	
Colour	Number
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Grey	8
White	9

NUMERICAL CODES

Numerical Codes are used with non - electrolytic capacitors to specify their capacitance. Usually, these codes are 3 digit long, specifying the capacitance in Pico Farads; the first two digits are Tens and Units, where as the third digit is power of 10.

Common Temperature Coefficient Codes (Ceramic)	
Code	Tolerance
C	$\pm 0.25 \mathrm{pF}$
J	$\pm 5 \%$
K	$\pm 10 \%$
M	$\pm 20 \%$
D	$\pm 0.5 \mathrm{pF}$

For example: 102 means $1000 \mathrm{pF}=1 \mathrm{nF}$ (not 102pF!)
For example: 472J means $4700 \mathrm{pF}=4.7 \mathrm{nF}$ (J means 5% tolerance).
For example: 333 K means $33000 \mathrm{pF}=33 \mathrm{nF}$ (K means 10\% tolerance).

Tens	Units	Power of 10	Capacitance
1	0	2	$10 \times 10^{2} \mathrm{pF}=1000 \mathrm{pF}=1 \mathrm{nF}$
4	7	2	$47 \times 10^{2} \mathrm{pF}=4.7 \mathrm{nF} \pm 5 \%$
3	3	3	$33 \times 10^{5} \mathrm{pF}=33 \mathrm{nF} \pm 10 \%$

(a) Electrolytic

(b) Non Electrolytic

Capacitors

Figure - 2: Capacitors
2. The first two color bands specify the first two digits of the nominal value, and the third band represents the power of 10 by which the first two digits are multiplied.

3- The example below demonstrates these computations.

Solution:-

Yellow, Violet, Orange, Silver

 $47 \times 10^{3}+10 \%$

Thus,
Nominal resistance $=47 \times 103 \Omega=47 \mathrm{k} \Omega$
The possible range of actual values is:
$47 \mathrm{k} \Omega \pm$ (0.1) $47 \mathrm{k} \Omega=47 \mathrm{k} \Omega \pm 4.7 \mathrm{k} \Omega$
Or From $42.3 \mathrm{k} \Omega$ to $51.7 \mathrm{k} \Omega$

"Part 2: Capacitance Measurement:"

CAPACITOR:

There are two types of capacitors, i.e. electrolyte and non - electrolyte capacitors. The non-electrolytic capacitors use Paper, Mica, Ceramic, Mylar, Glass, Porcelain, Polycarbonate, and Wax as Insulator. Figure 2 shows symbols of the two types of the capacitor. The difference in the use of the two types of capacitors is that non-electrolytic capacitors can be charged in any direction, where as the Electrolytic ones can only be charged in one direction. Electrolytic Capacitors are Polar; i.e., one of its two plates is Positive and other is Negative, whereas in non-electrolytic capacitors, both the plates are same, having no polarity.

OBSERVATION:-

TABLE -A

Resistors	Colour Bands				Colour Bands				Nominal Resistances	Maximum Resistances	MinimumResistances
	1	2	3	4	1	2	3	4			
Example	Red, Red, Black, Gold				2	2	0		22,	23.1 Ω	20.9
1											
2											
3											
4											
5											

TABLE - B

Resistor	Measured Value (VOM / DMM)	Falls within specified tolerance
Example	23Ω	Yes
1		
2		
3		
4		
5		

EXPERIMENT NO: 03

VERIFICATION OF OHMS LAW

OBJECTIVE:

To Verify Ohms Law for a series resistive Network

EQUIPMENT/COMPONENTS REQUIRED:

1. DC Power Supply
2. Multi-meter
3. Bread Board
4. Resistors

THEORY:

Ohms Law simply states that:
"The current is inversely proportional to the Resistance. The Ohms law can be combined mathematically to give the expression as $\mathrm{I}=\mathrm{V} / \mathrm{R}$.

The Ohms law correctly expresses the relationship as for a fixed resistance, current increases when voltage increases, and for a fixed voltage, Current decreases when Resistance increases.

FIGURE:

Circuit Diagram for Ohms Law Verification

PROCEDURE:

1. Construct the circuit as shown in figure.
2. Apply power to the circuit and by varying R1 measure and record the voltage drop across R2 in the Table
3. Now, break the circuit at the input and place ammeter and measure the current flowing through the circuit and record in the table.
4. By measuring the voltage drop across, and the current through, the resistive circuit verify the Ohms law with the equation (I=V/R)

TABLE:

Vs	IT	R1	R2	V

RESULTS:

EXPERIMENT NO-04

CHARACTERISTICS OF SERIES DC CIRCUIT

OBJECTIVE:

To investigate the characteristics of a series DC circuit

EQUIPMENT/COMPONENTS REQUIRED:

1. DMM
2. DC Supply
3. Resistors of $220 \Omega(\mathrm{RR} \mathrm{Br}), 330 \Omega(\mathrm{Or} \mathrm{Or} \mathrm{Br}) \& 430 \Omega(\mathrm{Y}, \mathrm{Or}, \mathrm{Br})$.

THEORY:
In a series circuit, (Fig 4.1), the current is the same through all of the circuit elements.
The total Resistance RT =R1 + R2 + R3.
By Ohm's Law, the Current "l" is

$$
\mathrm{I}=\frac{E}{R_{T}}
$$

Applying Kirchoff's Voltage Law around closed loop of Fig 4.1, we find.

$$
\mathrm{E}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}
$$

Where,

$$
\mathrm{V}_{1}=\mathrm{IR}_{1}, \mathrm{~V}_{2}=\mathrm{IR}_{2}, \mathrm{~V}_{3}=\mathrm{IR}_{3}
$$

Note in Fig 4.1, that I is the same throughout the Circuit.

The voltage divider rule states that the voltage across an element or across a series combination of elements in a series circuit is equal to the resistance of the element divided by total resistance of the series circuit and multiplied by the total imp4ressed voltage. For the elements of Fig 4.1

$$
\mathbf{v}_{\mathbf{1}}=\frac{R_{1} E}{R_{T}}, \mathbf{v}_{\mathbf{2}}=\frac{R_{2} E}{R_{T}}, \mathbf{v}_{\mathbf{3}}=\frac{R_{3} E}{R_{T}}
$$

Figure - 4.1

Figure - 4.2

PROCEDURE:

1. Construct the circuit shown in Fig 4.2.
2. Set the Dc supply to 12 V by using DMM. Pick the resistances having values $220 \Omega, 330 \Omega \&$ 430Ω. Also verify their resistance by using DMM.
3. Measure voltage across each resistor with DMM and record it in the Table (b).
4. Measure Current I delivered by source.
5. Shut down and disconnect the power supply. Then measure input resistance RT across points A-E using DMM. Record that value.
6. Now Calculate, respective currents (using $\mathrm{I}_{1}=\frac{V_{1}}{R_{1}}$) and $\mathrm{R}_{\mathrm{T}}\left(\mathrm{R}_{\mathrm{T}}=\frac{E}{I}\right)$
7. Calculate $\mathrm{V} 1 \& \mathrm{~V} 2$ using voltage divider rule and measured resistance value.
8. Create an open circuit by removing R3\& measure all voltages and current I.

Note: Use measured value of resistance for all calculations.

OBSERVATIONS:

a. Resistors

S.No	Nominal Values (Ω)	Measured Values (Ω)	RT (Measured) (Ω)	RT (Calculated) (Ω)
1	$R 1=220 \Omega$			
2	$R 2=220 \Omega$			
3	$R 3=330 \Omega$			
4	$R 4=430 \Omega$			

b. Voltages

S.No	Measured Value (V)	Calculated Value (V) (VDR)	Measured Values When R3 is Open Circuited (V)
1			
2			
3			
4			

C. Current

S.No	Calculated Value (A) Ohms Law	Measured Value of I (A)	Measured Value of I When R3 is Open Circuited (A)
1			
2			
3			
4			

EXPERIMENT NO - 05

CHARACTERISTICS OF PARALLEL DC CIRCUITS

OBJECTIVE:

To Investigate the characteristics of parallel dc circuits

EQUIPMENT/COMPONENTS REQUIRED:

1. 15V DC Power Supply.
2. DMM.
3. $2 x 1 \mathrm{~K} \Omega$ (Br, Black, Red).
4. $2 \mathrm{~K} \Omega(\mathrm{R}$, Black, Red).

THEORY:

In a parallel circuit (Fig 5.1) the voltage across parallel elements is the same.
The total or equivalent resistance (RT) is given by.

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots-\cdots-\cdots-\cdots+--\cdots+\frac{1}{R_{N}}
$$

If there are only two resistors in parallel, it is more convenient to use.

$$
\mathbf{R}_{\mathbf{T}}=\frac{R_{1} R_{2}}{R_{1}+R_{\mathbf{2}}}
$$

In any case, the total resistance will always be less than the resistance of the smallest resistor of the parallel network. For the network of Fig 5.1. The currents are related by the following expression.

$$
I_{T}=I_{1}+I_{2}+I_{3}+\cdots \cdots \cdots+\cdots+I_{N}
$$

Applying current divider rule (CDR) \& the network of Fig 5.2

$$
\mathbf{I}_{1}=\frac{R_{2} I_{T}}{R_{1}+R_{2}} \quad \text { And } \quad \mathbf{I}_{2}=\frac{R_{1} I_{T}}{R_{1}+R_{2}}
$$

Figure - 5.1

Figure - 5.2

Figure-5.3
For equal parallel resistors, the current divides equally and the total resistance is the value of one divided by the ' N ' number of equal parallel resistors, i.e.

$$
\mathbf{R}_{\mathbf{T}}=\frac{R}{N}
$$

For a parallel combination of \mathbf{N} resistors, the current IK through $\mathbf{R K}$ is.

$$
\mathbf{I}_{\mathbf{K}}=\mathbf{I}_{\mathbf{T}} \mathbf{x} \frac{\frac{1}{R_{K}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \ldots \ldots \ldots+\frac{1}{R_{N}}}
$$

PROCEDURE:

1. Construct the circuit shown in Fig 5.3.
2. Set the $D C$ supply to 15 V by using $D M M$. Pick the resistances values $1 \mathrm{~K} \Omega, 1 \mathrm{~K} \Omega$, and $2 \mathrm{~K} \Omega$. Also verify their resistance by using DMM.
3. Measure voltage across each resistor with DMM and record it in the Table b.
4. Measure the currents IT, I1, I2, and I3.
5. Shut down \& disconnect the power supply. Then measure input resistance ' $R T$ ' across points A-B using DMM. Record that value.
6. Now calculate respective voltages (using $\mathrm{V}=\mathrm{IR}$) and RT (using equivalent resistance formula).
7. Calculate I1, I2, I3 using CDR.
8. Create an open circuit by removing R2 and measure all voltages and currents.

Note: Use measured value of resistance for all calculations.

OBSERVATION:

a) Resistors:

S.No	Nominal Values (Ω)	Measured Value (Ω)	RT Measured (Ω)	RT Calculated $(\mathbf{\Omega})$
1	R1 $=1 \mathrm{~K}$			
2	R2 $=1 \mathrm{~K}$			
3	R3 $=2 \mathrm{~K}$			

b) Voltages:

S.No	Measured Values (V)	Calculated Value (Ohms Law) (V)	Measured Values when R2 is Open Circuited (V)
1	$\mathrm{~V} 1=$	$\mathrm{V} 1=$	$\mathrm{V} 1=$
2	$\mathrm{~V} 2=$	$\mathrm{V} 2=$	$\mathrm{V} 2=$
3	$\mathrm{~V} 3=$	$\mathrm{V} 3=$	

C) Current:

S.No	Measured Values (A)	Calculated Value $(\mathrm{CDR})(\mathrm{A})$	Measured Values when R2 is Open Circuited (A)
1	$\mathrm{I}=$	$\mathrm{I} 1=$	$\mathrm{I}=$
2	$\mathrm{I} 2=$	$\mathrm{I}=$	$\mathrm{I}=$
3	$\mathrm{I} 3=$	$\mathrm{IT}=$	$\mathrm{IT}=$
4	$\mathrm{IT}=$		

EXPERIMENT NO - 06

SOFTWARE SIMULATION
Verify Experiment 3 (Ohms Law), Experiment 4 (KVL) \& Experiment 5 (KCL) by the use of Proteus / Electronic Workbench also Submit a printout of a proper labeled schematic. Include hand calculation.

Use all values of resistances, voltages and currents of Experiment No: 3, 4 \& 5 .

Circuit Diagram for Ohms Law

Circuit Diagram for KVL

Circuit Diagram for KCL

EXPERIMENT NO-07

MESH ANALYSIS

OBJECTIVE:

To analyze a two Mesh circuit and to determine the current in each branch of the circuit

EQUIPMENT/COMPONENTS REQUIRED:

1. DC Power Supply
2. Multi-meter
3. Bread Board
4. Resistors

THEORY:
Algebraic sum of voltages around a close loop is zero.
Applying KVL to mesh 1

$$
\begin{align*}
& -E 1+I 1 R 1+(I 1-I 2) R 2=0 \\
& I 1(R 1+R 2)-I 2 R 2=E 1 \tag{1}
\end{align*}
$$

Applying KVL to mesh 2

$$
\begin{align*}
& -E 2+(I 2-I 1) R 2+I 2 R 3=0 \\
& I 2(R 2+R 3)-I 1 R 2=E 2
\end{align*}
$$

$\left(\begin{array}{ll}R 1+R 2 & -R 2 \\ -R 2 & R 2+R 3\end{array}\right) \quad\binom{I 1}{I 2}=\binom{E 1}{E 2}$

CALCULATION:

FIGURE:

Figure

PROCEDURE:

1. Construct the circuit shown in Fig
2. Set the DC supply $\mathrm{E} 1=12 \mathrm{~V}$ and $\mathrm{E} 2=5 \mathrm{~V}$.
3. Pick the resistances. Also verify their resistance by meter and record it in table.
4. Measure the currents through resistances R1, R2 \& R3 and record it in table.
5. Now Set the DC supply $\mathrm{E} 1=5 \mathrm{~V}$ and $\mathrm{E} 2=12 \mathrm{~V}$.
6. Repeat step $4 \& 5$ and record all the values

Note: Use measured value for all calculations.

TABLE:

E_{1}	E_{2}	R_{1}	R_{2}	R_{3}	I_{1}	I_{2}	$I_{R 2}$	$V_{R 1}$	$V_{R 2}$	$V_{R 3}$
$12 v$	$5 v$									
$5 v$	$12 v$									

EXPERIMENT NO-08

COMPUTER AIDED CIRCUIT ANALYSIS

Use Proteus / Electronic Work Bench to verify the solution of given questions also Submit a printout of a proper labeled schematic. Include hand calculation

1- Determine the voltage across the 2-mA source. Assuming the bottom node is ground.

2- Use mesh analysis to find ix in the circuit shown.

3- Use the mesh concept to determine the power supplied by the $2.2-\mathrm{V}$ source.

EXPERIMENT NO: 09

SUPERPOSITION THEOREM

OBJECTIVE:

To Verify Superposition Principle in DC Circuits

REQUIRED:

1- DMM
2- 2 DC Power Supplies,
3- \quad Resistances ($1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 430 \mathrm{k} \Omega$)

THEORY:

The superposition principle states that:

"The current through or voltage across, any resistive branch of a multisource network is the algebraic sum of the contribution due to each source acting independently."

When the effect of one source is considered, the others are replaced by their internal resistances. This principle permits one to analyze circuits without restoring to simultaneous equations.
Superposition is effective only for linear circuit relationship. Non-linear effects, such as power, which varies as the square of the current or voltage, cannot be analyzed using this principle.

FIGURE:

Fig-1

Fig-2

Fig-3

PROCEDURE:

1. Construct the Network of Fig-1, where R1 $=1 \mathrm{k} \Omega, R 2=430 \Omega, R 3=2 \mathrm{k} \Omega$. Verify the resistances using DMM.
2. Using superposition and measured resistance values, calculate the currents indicated in observation Table (a), for the network of Fig-1. Next to each magnitude include a small arrow to indicate the current direction for each source and for the complete network.
3. Energize the network of Fig-1 and measure the voltages indicated in observation table b, calculate current in Table (b) using Ohm's Law. Indicate the polarity of the voltages and direction of currents on Fig-1.
4. Construct the network of Fig -2. Note that source E2 has been removed.
5. Energize the network of Fig -2 and measure the voltages indicated in Table (c). Calculate currents using Ohm's Law.
6. Now construct the network of Fig -3. Note that source E1 has been removed.
7. Energize the network of Fig -3 and measure the voltages indicated in Table (d). Calculate currents using Ohm's Law.
8. Using the results of steps \# 3,5 and 7, determine the power delivered to each resistor and insert in Table (e).

OBSERVATIONS:

Resistors:

	Nominal Values (Ω)	Measured Values (Ω)
1	1 K	
2	430	
3	2 K	

a) Calculated Values for the Network of Fig. 6.1

Due to E1	Due to E2	Algebraic Sum (Σ)
$\mathbf{I}_{\mathbf{1}}=$	$\mathbf{I}_{\mathbf{1}}=$	$\mathbf{I}_{\mathbf{1}}=$
$\mathbf{I}_{\mathbf{2}}=$	$\mathbf{I}_{\mathbf{2}}=$	$\mathbf{I}_{\mathbf{2}}=$
$\mathbf{I}_{\mathbf{3}}=$	$\mathbf{I}_{\mathbf{3}}=$	$\mathbf{I}_{\mathbf{3}}=$

b) Measured Values for the Network of Fig. 6.1

$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{3}}$	$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{3}}$

c) Measured Values for the Network of Fig. 6.2

$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{3}}$	$\mathbf{\mathbf { I } _ { 1 }}$	$\mathbf{\mathbf { I } _ { \mathbf { 2 } }}$	$\mathbf{I}_{\mathbf{3}}$

d) Measured Values for the Network of Fig. 6.3

$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{3}}$	$\mathbf{\mathbf { I } _ { \mathbf { 1 } }}$	$\mathbf{\mathbf { I } _ { \mathbf { 2 } }}$	$\mathbf{I}_{\mathbf{3}}$

e) Power Absorbed (use measured values of I and V)

Due to E1	Due to E2	Sum of Columns 1 \& 2	$E_{1} \& E_{2}$ Acting Simultaneously

EXPERIMENT NO: 10

VERIFICATION OF THEVENIN'S THEOREM

OBJECTIVE:

To Verify Thevenin Theorem by finding its Thevenin’s Equivalent Circuit

REQUIRED:

1. VOM/DMM
2. Power Supply
3. Resistances (120 , 1k $\Omega, 390 \Omega$)

THEORY:

Any linear circuit is equivalent to a single voltage source (Thevenin's Voltage) in series with single equivalent resistance (Thevenin's Equivalent Resistances)

The current flowing through a load resistance RL connected across any two terminals \mathbf{A} and \mathbf{B} of a network is given

FIGURE:

Fig - 1

Fig-2

Fig-3

PROCEDURE:

1. Reduce the circuit by calculating the Thevnin equivalent resistance across the terminals $\mathbf{A} \& \mathbf{B}$
2. Determine the Thevinin equivalent voltage across terminals "A" and "B" for $5 \mathrm{~V}, 10 \mathrm{~V}, 15 \mathrm{~V}$.
3. Now, combine the Thevenin voltage with its resistance determines across $120 \Omega, 1 \mathrm{~K} \Omega$, and 390Ω resistors.

TABLE-1:

Vs	$\mathbf{R 1}_{1}$	$\mathbf{R 2}_{2}$	\mathbf{R}_{3}	$\mathbf{V}_{\text {TH }}$	RTH
5V					
10V					
15V					

TABLE-2:

Vs	$V_{\text {TH }}$	RTH	RL	IL
5V			120	
			390	
			1K	
10V			120	
			390	
			1K	
15V			120	
			390	
			1K	

EXPERIMENT NO: 11

VERIFICATION OF MAXIMUM POWER TTRANSFER THEOREM

OBJECTIVE:

To Verify Maximum Power Transfer Theorem

Discussion

Maximum power transfer theorem states that any linear network, if the load resistance equals its Thevenin's equivalent resistance, the load can yield a maximum power from sources.

Now we consider the Thevenin's equivalent shown in Fig 1. By Ohm's Law, the power dissipated in the Load P_{RL} can be expressed as follows.

$$
\begin{gathered}
\mathrm{I}=\mathrm{E}_{\mathrm{TH}} /\left(\mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{L}}\right) \\
\mathrm{P}_{\mathrm{RL}}=\mathrm{I}^{2} * \mathrm{R}_{\mathrm{L}} \\
\mathrm{P}_{\mathrm{RL}}=\left[\mathrm{E}_{\mathrm{TH}} /\left(\mathrm{E}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{L}}\right)^{2} * \mathrm{R}_{\mathrm{L}}\right. \\
\text { or } \\
\mathrm{P}_{\mathrm{RL}}=\left(\mathrm{E}_{\mathrm{TH}}{ }^{2} * \mathrm{R}_{\mathrm{L}}\right) /\left(\mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{L}}\right)^{2}
\end{gathered}
$$

Figure-1

Suppose $\mathrm{E}_{T H}=4 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{TH}}=5 \Omega$, then P_{RL} can be expressed by the equation $\mathrm{P}_{\mathrm{RL}}=16 \mathrm{RL} /\left(5+\mathrm{R}_{\mathrm{L}}\right)^{2}$. Now we calculate and record each of the P_{RL} values for each R_{L} value from 1Ω to 9Ω increasing the step to 1Ω. The results are listed in Table 1 and plotted in Fig 2. From both Table 1 and fig- 2, you can find that the maximum value of P_{RL} occurs at $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{TH}}$.

Table - 1

(Ohms)	(Watts)
1	0.445
2	0.655
3	0.750
4	0.790
5	0.800
6	0.792
7	0.780
8	0.760
9	0.735

Figure - 2

Procedure

1. Set the Module KL-13001 on the main KL-21001, and locate the block a.
2. According to Figs. 1, complete the experiment circuit with short-circuit clips.
3. Apply +15 V to +V .

Turn off the power switch.
4. Adjust $\mathrm{V}_{\mathrm{R} 1}$ to 250Ω. (Let $\left.\mathrm{R}_{1}=\mathrm{R}_{\mathrm{TH}}, \mathrm{V}_{\mathrm{R} 1}=\mathrm{R}_{1}\right)$.

Turn on the power.
Measure and record the current flowing through VR1 as indicated by the milliammter.

$$
\text { I }=
$$

\qquad mA .

Calculate and record the power dissipated by $\mathrm{V}_{\mathrm{R} 1}$ using the equation
$\mathrm{P}_{\mathrm{RL}}=\mathrm{I}^{2} * \mathrm{R}_{\mathrm{L}} \cdot \mathrm{P}_{\mathrm{RL}}=$ \qquad W.

Turn off the power.
5. Adjust $\mathrm{V}_{\mathrm{R} 1}$ to 500Ω and repeat step 4 .
I = \qquad mA
$\mathrm{P}_{\mathrm{RL}}=$ \qquad W
6. Adjust $\mathrm{V}_{\mathrm{R} 1}$ to $1 \mathrm{~K} \Omega$ and repeat step 4 .
I = \qquad mA
$\mathrm{P}_{\mathrm{RL}}=$ \qquad W
7. Adjust $\mathrm{V}_{\mathrm{R} 1}$ to $1.25 \mathrm{~K} \Omega$ and repeat step 4 .

8. Adjust $\mathrm{V}_{\mathrm{R} 1}$ to $1.5 \mathrm{~K} \Omega$ and repeat step 4.
$\mathrm{I}=$ \qquad mA
$\mathrm{P}_{\mathrm{RL}}=$ \qquad W
9. Complete Fig. 4 by using you measured I and calculated PRL values.

EXPERIMENT NO: 12

AC RC Circuit

OBJECTIVE:

To understand the characteristics of an RC series network in ac circuit

Discussion

When an ac voltage is applied across a pure resistance, the resultant current is in phase with the applied voltage. Resistance therefore has no phase angle associated with it and is written as R 0 . When an ac voltage is applied across a pure capacitor, the resultant current leads the voltage by 90 . Capacitance therefore has a phase angle associated with it. The opposition that a capacitor offers to the flow of alternating current is called capacitive reactance and is written as Xc -90 , or -jXc . The magnitude of Xc is $\mathrm{Xc}=1 / 2 \pi \mathrm{fC}=1 / \mathrm{wC}$.

An RC series circuit with an ac supply voltage is shown Fig. The impedance of this circuit can be expressed as

$$
\mathrm{Z}_{\mathrm{T}}=\mathrm{Z}_{1}+\mathrm{Z}_{2}=\mathrm{R} 0+\mathrm{X}_{\mathrm{C}}-90
$$

The current in the across R is

$$
E_{R}=I R
$$

The voltage across C is
$E_{C}=I X_{C}$
By Kirchhoff's voltage law, then

$$
\begin{aligned}
& \quad \begin{array}{l}
\Sigma \mathrm{V}=\mathrm{E}-\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{C}}=0 \\
\text { Or } \quad E=\overrightarrow{V_{R}}+\overrightarrow{V_{C}}
\end{array} .
\end{aligned}
$$

Figure

Procedure

1. Set the module KL-13001 on the main unit KL-21001, and locate the block e.
2. According to Figs. 1 complete the experiment circuit with short-circuit clips. Apply the AC power 9 V to E_{A}.

Measure and record $\mathrm{E}_{\mathrm{A}}=$ \qquad V
3. Calculated and record the values below.

Reactance of C_{2}	X_{C}	$=$	
Total impedance	Z_{T}	$=$	Ω
Current in circuit	I	$=$	Ω
Voltage across R_{8}	R	$=$	
Voltage across C_{2}	E_{C}	$=$	mA
Power dissipated	P	$=$	\square

4. Measure and record the values of ER and EC by using the ac voltmeter.
$\begin{array}{llll}\text { Voltage across } \mathrm{R}_{8} & \mathrm{R} & = & \mathrm{V} \\ \text { Voltage across } \mathrm{C}_{2} & \mathrm{E}_{\mathrm{C}} & = & \\ & & \mathrm{V}\end{array}$
Are you sure the measured values equal to the calculated values of step 3?
Yes
NO
5. Using the equation $E=\overrightarrow{V_{R}}+\overrightarrow{V_{C}}$, calculate the applied voltage of the circuit.

$$
\mathrm{E}_{\mathrm{A}} \quad=\quad \longrightarrow \mathrm{V}
$$

Does the calculated value equal the measured value of step 2 ?
Yes
NO

If no, explain it.
5. Using the measured values of ER and EC, calculate and record the current I.

$$
\mathrm{I} \quad=\quad \mathrm{mA}
$$

Does the calculated value equal the measured value of step 3 ?
YES
NO
6. Using the values of $\mathrm{R}, \mathrm{X}_{\mathrm{C}}$ and Z_{T}, plot a vector diagram in space below.

EXPERIMENT NO: 13

AC RL Circuit

OBJECTIVE:

To understand the characteristics of an RL series network in ac circuit

Discussion

When an ac voltage is applied across a pure inductance, the current lags the voltage by 90 .Inductance therefore has phase angle associated with it .The opposition that an inductance offers to the flow of alternating current is called inductive reactance and may be expressed as $X_{L} \leqslant 90^{\circ}$, or $\mathbf{j} X_{L}$

The magnitude of X_{L} is $X_{L}=2 \pi \mathrm{fL}=2^{\omega} \mathrm{L}$

An RL series circuit with an ac supply voltage is shown in Fig-1.The impedance of this circuit can be expressed as

$$
\begin{aligned}
Z_{T} & =Z_{1}+Z_{2} \\
& =R<0^{\circ}+X_{L}<+90^{\circ}
\end{aligned}
$$

The current in the circuit is

$$
\mathrm{L}=\mathrm{E} / Z_{T} \quad \text { (the current lags the voltage) }
$$

The voltage across R is

$$
V_{R}=1 \mathrm{R}
$$

The voltage across 1 is

$$
V_{L}=\mathrm{I} X_{L}
$$

By Kirchhoff s voltage law, then

$$
\begin{aligned}
& \Sigma \mathrm{V}=\mathrm{E}-V_{R}-V_{L}=0 \\
& E=\overrightarrow{V_{R}}+\overrightarrow{V_{L}}
\end{aligned}
$$

R9

Figure

Procedure

1. Set the module KL - 13001 on the main unit KL-21001, and locate the block f , link 0.5 H inductance at L1 position.
2. According to Figure complete the experiment circuit with short -circuit clips. Apply the AC power 9 V to EA .

Measure and record EA. $\quad \mathrm{EA}=$ \qquad V
3. Calculate and record the values below.

Reactance of L1	$X_{L}=$	Ω
Total impedance	$Z_{T}=$	Ω
Current in circuit	$\mathrm{I}=$	mA
Voltage across R9	$V_{R}=$	V
Voltage across L1	$V_{L}=$	V
Phase angle	$\theta=$	
Power dissipated	$\mathrm{P}=$	mW

4. Measure and record the values of $V_{R}=$ and $V_{L}=$ by Using the AC voltmeter.

Voltage across R9
$V_{R}=$ \qquad V

Voltage across L1
$V_{L}=$ \qquad V
5. Do the measured values equal the calculated values of step 3 ?

Yes
No
6. Using the equation $E=\overrightarrow{V_{R}}+\overrightarrow{V_{L}}$, calculate the applied voltage of the circuit

EA = \qquad V
Does the calculated value equal the measured value of step 2 ?
Yes
No
If No explain it.

EXPERIMENT NO: 14

AC RLC Circuit

OBJECTIVE:

To understand the characteristics of an RLC series network in ac circuit

Discussion:

Figure shows an RLC series-parallel circuit with an ac power supply as mentioned before. The capacitive reactance X_{C} and inductive reactance X_{L} very with frequency. Therefore, the net impedance of the parallel circuit consisting of 12 and C3 will vary with input frequency. At some frequency which we will define as the resonant frequency f_{r}.the parallel circuit operates in resonance and X_{L} equals X_{C} the resonant frequency can be expressed as $f_{r}=1 / 2 \pi \sqrt{L C}$

Figure

Procedure

1. Set the module KL - 13001 on the main unit KL -21001, and locate the block h .
2. According to Figure, complete the experiment circuit with short -circuit clips. The L 2 is the 0.1 H inductor provided.
3. Set the function selector of function generator to sine wave position .connect the oscilloscope to the output of function generator.

Adjust the amplitude and frequency control knobs to obtain an output of 1 KHz , $5 \mathrm{Vp}-\mathrm{p}$ and connect it to the circuit input (I/P).
4. Using the oscilloscope, measure and record the voltage acrossL2, C3 and R12. $V_{L}=\longrightarrow \quad \mathrm{V}$ p-p
$V_{C}=$ \qquad V p-p
$V_{R}=$ \qquad V p-p
5. Using the equation $f_{r}=1 / 2 \pi \sqrt{L C}$, calculate and record the resonant frequency of the circuit.
$f_{r}=$ \qquad Hz
6. Vary the output frequency of function generator to obtain a maximum value of VAB.

Using the oscilloscope, measure and record the input frequency

$$
f=\ldots \mathrm{Hz}
$$

7. Is there agreement between the frequency value f and the resonant frequency f_{r} of step 5 ?

Yes
No

EXPERIMENT NO: 15

Power in AC Circuit

OBJECTIVE:

To understand the characteristics of an RC series network in ac circuit

Discussion

Electrical power in a dc circuit is calculated by $\mathrm{P}=\mathrm{EI}$. This is also true in ac circuit with a pure resistor. When an ac voltage is applied across a resistor, the instantaneous variations of current through the resistor follow exactly the instantaneous changes in voltage .this is called that the current is in phase with the voltage.

Figure-1

It is possible that the current is not phase with the voltage when a load contains reactive element such as in inductor or capacitor. See Fig. 1. The current I lags the voltage E by a phase angle θ. Since the instantaneous power is the product of the instantaneous current and voltage values, the instantaneous power curve can therefore be plotted as the areas shown by slanting lines.

The loads absorb energy during the instantaneous power in positive direction and returns energy during the instantaneous power in negative direction. In fig 1, the current I and voltage E appear a phase angle θ and the power P will be $\mathrm{P}=\mathrm{EI} \cos \theta$. If the current is in phase with the voltage $(\theta=0)$, the power will be $\mathrm{P}=\mathrm{EI}$.

PROCEDURE

1. Set the module KL-13001 on the main unit KL-21001, and located the block a.
2. Measure and record the resistance of R1.
$\mathrm{R} 1=$ Ω
3. According to Fig. 2 , complete the experiment circuit with short-circuit clips. Apply the AC source 9 V to $\mathrm{E}(\mathrm{A})$. Measure and record E(A).
$\mathrm{E}(\mathrm{A})=$ \qquad V.

Figure-2
4. Measure and record the current value.
$\mathrm{I}=$ mA .
5. Using the equation $\mathrm{P}=\mathrm{EI} \cos \theta$, calculate the power dissipated by the circuit.
$\mathrm{P}=$ \qquad W
6. Using the equation $\mathrm{P}=\frac{E 2}{R}$, calculate and record the power dissipated by the resister R1.
$\mathrm{P}=$ \qquad W
7. Using the equation $P=I^{2} \mathrm{R}$, calculate and record the power dissipated by the resistor R1. $\mathrm{P}=$ \qquad W
8. Do all of the power values agree? Yes No
9. Turn off the power.

Touch the body of R1 to feel the temperature.
What is the form that power is converted into? \qquad

